Скрыть объявление

Вы посетили форум как Гость.
ВАШИ ПРАВА ОГРАНИЧЕНЫ
Зарегистрируйтесь на форуме,
и станьте полноценным участником.
Или Войдите в свой аккаунт.

Скачать [GeekBrains] Машинное обучение. Часть 4/5 (2020)

Тема в разделе "Курсы по программированию и администрированию", создана пользователем Ɗǿᵯɇᵴŧǿᵴ, 15 сен 2020.

Метки:
  1. Ɗǿᵯɇᵴŧǿᵴ

    Ɗǿᵯɇᵴŧǿᵴ

    Регистрация:
    5 мар 2020
    1.619
    222
    0
    Пол:
    Мужской
    45931_01432135.jpg

    Программа
    30+ онлайн-уроков, более 65 часов обучающего контента и практика после каждого занятия
    Длительность: 5 месяцев.

    Модуль 1. Теория вероятностей и математическая статистика
    Модуль 2. Библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn
    Модуль 3. Библиотеки Python для Data Science: продолжение
    Модуль 4. Алгоритмы анализа данных
    Модуль 5. Системы машинного обучения в Production

    Теория вероятностей и математическая статистика
    • Случайные события. Условная вероятность. Формула Байеса. Независимые испытания

    • Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона

    • Описательная статистика. Качественные и количественные характеристики популяции. Графическое представление данных

    • Непрерывные случайные величины. Функция распределения и плотность распределения вероятностей. Равномерное и нормальное распределение. Центральная предельная теорема

    • Проверка статистических гипотез. P-значения. Доверительные интервалы. A/B-тестирование

    • Взаимосвязь величин. Параметрические и непараметрические показатели корреляции. Корреляционный анализ

    • Многомерный статистический анализ. Линейная регрессия

    • Дисперсионный анализ. Логистическая регрессия

    Курсовой проект
    Разведочный анализ данных (EDA) на основе выбранного датасета: визуализация, корреляционный, дисперсионный и факторный анализ


    Библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn
    • Введение в курс. Вебинар

    • Вычисления с помощью Numpy. Работа с данными в Pandas. Видеоурок

    • Вычисления с помощью Numpy. Работа с данными в Pandas. Вебинар

    • Визуализация данных в Matplotlib. Видеоурок

    • Визуализация данных в Matplotlib. Вебинар

    • Обучение с учителем в Scikit-learn. Видеоурок

    • Обучение с учителем в Scikit-learn. Вебинар

    • Обучение без учителя в Scikit-learn. Видеоурок

    • Обучение без учителя в Scikit-learn и введение в итоговый проект. Вебинар

    • Консультация по итоговому проекту. Вебинар

    Курсовой проект
    Соревнование на платформе Kaggle по предсказанию цены на недвижимость, решение задачи регрессии


    Библиотеки Python для Data Science: продолжение
    • Введение в задачу классификации. Постановка задачи и подготовка данных

    • Анализ данных и проверка статистических гипотез

    • Построение модели классификации

    • Оценка и интерпретация полученной модели. Обсуждение курсового проекта

    Курсовой проект
    Соревнование на платформе Kaggle по кредитному скорингу, решение задачи классификации


    Алгоритмы анализа данных
    • Алгоритм линейной регрессии. Градиентный спуск

    • Масштабирование признаков. L1- и L2-регуляризация. Стохастический градиентный спуск

    • Логистическая регрессия. Log Loss

    • Алгоритм построения дерева решений

    • Случайный лес

    • Градиентный бустинг (AdaBoost)

    • Классификация с помощью KNN. Кластеризация K-means

    • Снижение размерности данных

    Курсовой проект
    Участие в одном или двух соревнованиях на Kaggle: предсказать средний балл на экзамене по математике, который получают ученики репетиторов (задача регрессии); предсказать, подойдет ли репетитор для подготовки к экзамену по математике (задача классификации)


    Системы машинного обучения в Production
    • Введение в задачу предсказания оттока. Формализация задачи и сбор сырых данных

    • Загрузка данных и построение обучающей выборки. Анализ и предобработка датасета. Балансировка классов

    • Выбор и обучение модели на отобранных признаках. Сравнение качества и оценка модели

    • Оценка потенциального влияния на бизнес. Масштабирование решения

    • Подготовка к продакшену. Планировщик задач и перенос проекта из Jupyter в PyCharm

    Курсовой проект
    Оценка потенциального влияния на бизнес ML-решения, построение модели оттока клиентов в игровых проектах и подготовка кода для Production в PyCharm


    Подробнее:

    Скачать
     
Загрузка...
Похожие темы - [GeekBrains] Машинное обучение
  1. Ɗǿᵯɇᵴŧǿᵴ
    Ответов:
    0
    Просмотров:
    132
  2. Ɗǿᵯɇᵴŧǿᵴ
    Ответов:
    0
    Просмотров:
    114
  3. #What#
    Ответов:
    0
    Просмотров:
    187
  4. ScreaF
    Ответов:
    0
    Просмотров:
    162
  5. Ɗǿᵯɇᵴŧǿᵴ
    Ответов:
    0
    Просмотров:
    131

Поделиться этой страницей